Acute Kidney InjuryOxidative Stress

Effect of water diuresis with hydrogen saturation on the course of acute kidney damage during the separation of oxidation and phosphorylation

by Michael Ivanovich Sheremet, Oksana Volodimirvna Kolesnik, Volf Yakovich Tsitrin, Vyacheslav Vasilievich Bilookiy, Yurii Yevgenivich Rohovyi

Abstract:

Molecular hydrogen has the ability to penetrate cells, easily reach mitochondria, overcome body barriers, penetrate areas of ischemia, edema and inflammation, improve energy supply by supplying additional electrons and have antioxidant and anti-inflammatory effects by neutralizing highly reactive hydroxyl radical and peroxynitrite. In this experiment, we included 60 nonlinear male rats weighing 0.16-0.18 kg and investigated the effect of a negative redox potential solution -297.3±5.27 mV with a molecular hydrogen saturation of 1.2 ppm on the functional-biochemical processes of the kidneys in tissue hypoxia in moderately resistant rats during the separation of oxidation and phosphorylation with the introduction of 2,4-dinitrophenol at a dose of 3 mg/kg. All studies were performed on moderately stable rats. Experimental, functional, biochemical, enzyme-linked immunosorbent, physicochemical, histoenzymochemical, and statistical research methods were used. Under conditions of renal hypoxia in the separation of oxidation and phosphorylation, the use of a solution of negative redox reabsorption of sodium ions in the distal nephron reduces the manifestations of tubular proteinuria, increases the activity of succinate dehydrogenase in the proximal nephron and reduces the redox potential of urine to negative values. Negative redox potential solution with molecular hydrogen saturation has a protective effect on the kidneys and reduces elevated levels of proinflammatory cytokines of tumor necrosis factor-α, interleukin-1-β, and interleukin-6 in blood plasma, and causes oxidative modification of proteins in the renal cortex for their hypoxia in the separation of oxidation and phosphorylation.


Read more:

https://doi.org/10.25122/jml-2022-0155


Related Articles:

Inhalation of 4% and 67% hydrogen ameliorates oxidative stress, inflammation, apoptosis, and...

Acute kidney injury (AKI) is the major complication of rhabdomyolysis (RM) clinically, which is usually mimicked by glycerol injection in basic research. Oxidative stress, inflammatory response and apoptosis are recognized to play important roles in development of this disease. Recently,...

Year Published: 2023KidneyAcute Kidney InjuryPositive
ROS-responsive magnesium-containing microspheres for antioxidative treatment of intervertebral disc degeneration

Intervertebral disc degeneration (IVDD) is a degenerative disease characterized by lower-back pain, causing disability globally. Antioxidant therapy is currently considered one of the most promising strategies for IVDD treatment, given the crucial role of reactive oxygen species (ROS) in IVDD...

Year Published: 2023SpineIntervertebral Disc DegenerationPositive
Effectiveness and safety of hydrogen inhalation as an adjunct treatment in Chinese...

Aim: To analyze the effectiveness and safety of hydrogen inhalation (HI) therapy as an adjunct treatment in Chinese type 2 diabetes mellitus (T2DM) patients in a real-life clinical setting. Methods: This observational, non-interventional, retrospective, double-arm, 6-month clinical study included T2DM...

Year Published: 2023Whole BodyDiabetes (Type II)Positive
Protective Effect of Hydrogen-Rich Saline on Spinal Cord Damage in Rats

The anti-inflammatory and anti-apoptotic effects of molecular hydrogen, delivered as hydrogen-rich saline (HRS), on spinal cord injury was investigated. Four-month-old male Sprague Dawley rats (n = 24) were classified into four groups: (1) control-laminectomy only at T7-T10; (2) spinal injury-dura...

Year Published: 2023SpineSpinal Cord InjuryPositive