CancerNovel Therapy

Hydrogen-rich water exerts anti-tumor effects comparable to 5-fluorouracil in a colorectal cancer xenograft model

by Tyler W. LeBaron, Alex Tarnava, Majid Khazaei, Asma Mostafapour, Fereshteh Asgharzadeh

Abstract:

Background: Colorectal cancer (CRC) is the third leading cause of cancer-related deaths in the world. Tumor removal remains the preferred frontline treatment; however, effective non-surgical interventions remain a high priority. 5-fluorouracil (5-FU) is a widely used chemotherapy agent, and molecular hydrogen (H2) has been recognized for its antioxidant and anti-inflammatory effects, with research also suggesting its potential anti-tumor effects. Therefore, H2 dissolved in water [hydrogen-rich water (HRW)], with or without 5-FU, may present itself as a novel therapeutic for CRC. Aim: To investigate the effects of HRW, with or without 5-FU, as a novel therapeutic for CRC. Methods: CRC was induced in the left flank of inbred Balb/c mice. A total of 24 mice bearing tumors were randomly divided into four groups (n = 6 per group) and treated as follows: (1) Control group; (2) 5-FU group that received intraperitoneal injection of 5-FU (5 mg/kg) every other day; (3) H2 group that received HRW, created and delivered via dissolving the H2-generating tablet in the animals' drinking water, with 200 μL also delivered by oral gavage; and (4) The combination group, H2 (administered in same way as for group three) combined with 5-FU administered same way as group two. Results: Administration of HRW + 5-FU significantly improved tumor weight, tumor size, collagen content and fibrosis as compared to the CRC control group. Specifically, HRW attenuated oxidative stress (OS) and potentiated antioxidant activity (AA), whereas 5-FU treatment exacerbated OS and blunted AA. The combination of HRW + 5-FU significantly reduced tumor weight and size, as well as reduced collagen deposition and the degree of fibrosis, while further increasing OS and decreasing AA compared to administration of 5-FU alone. Conclusion: Administration of HRW, with or without 5-FU, may serve as a therapeutic for treating CRC.


Read more:

https://doi.org/10.4251/wjgo.v14.i1.242


Related Articles:

Enzyme-Triggered Size-Switchable Nanosystem for Deep Tumor Penetration and Hydrogen Therapy

The poor penetration of nanocarriers within tumor dense extracellular matrices (ECM) greatly restricts the access of anticancer drugs to the deep tumor cells, resulting in low therapeutic efficacy. Moreover, the high toxicity of the traditional chemotherapeutics inevitably causes undesirable side...

Year Published: 2023Whole BodyCancerPositive
Hydrogen inhalation enhances autophagy via the AMPK/mTOR pathway, thereby attenuating doxorubicin-induced cardiac...

Aims: Doxorubicin is a drug widely used in clinical cancer treatment, but severe cardiotoxicity limits its clinical application. Autophagy disorder is an important factor in the mechanism of doxorubicin-induced cardiac injury. As the smallest molecule in nature, hydrogen has various...

Year Published: 2023HeartCancerPositive
Hydrogen nanobubbles: A novel approach toward radio-sensitization agents

Background: Ocular melanoma is a rare kind of eye malignancy that threatens the patient's eyesight. Radiotherapy and surgical removal are the most commonly used therapeutic modalities, and nanomedicine has lately entered this field. Brachytherapy using Ruthenium-106 (106 Ru) ophthalmic plaques...

Year Published: 2023EyeCancerPositive
Hydrogen-Rich Water Ameliorates Metabolic Disorder via Modifying Gut Microbiota in Impaired Fasting...

Objective: Molecular hydrogen (H2) exhibits antioxidant, anti-inflammatory and anti-apoptotic effects, and has shown benefits in glucose and lipid metabolism in certain animal metabolic disorder models. However, the potential benefits of H2 treatment in individuals with impaired fasting glucose (IFG) has...

Year Published: 2023IntestineMetabolic SyndromePositive