Can Hydrogen Water Enhance Oxygen Saturation in Patients with Chronic Lung Disease? A Non-Randomized, Observational Pilot Study
by Tyler W. LeBaron, Viliam Mojto, Alex Tarnava, Ghizal Fatima, Jan Fedacko, Ram B. Singh
Abstract:
Background: Recently, chronic lung diseases have been found to be associated with marked inflammation and oxidative stress, which leads to fibrosis in the lungs and chronic respiratory failure. This study aims to determine if hydrogen-rich water (HRW) can enhance oxygen saturation among patients with chronic lung diseases. Methods: Ten patients with chronic lung diseases due to COPD (n = 7), bronchial asthma (n = 2), and tuberculosis of the lung (n = 1) with oxygen saturation of 90-95% were provided high-concentration (>5 mM) HRW using H2-producing tablets for 4 weeks. Oxygen saturation was measured via oximeter and blood pressure via digital automatic BP recorder. Results: HRW administration was associated with a significant increase in oxygen saturation (SpO2) and decrease in TBARS, MDA, and diene conjugates, with an increase in vitamin E and nitrite levels, compared to baseline levels. Physical training carried out after HRW therapy appeared to increase exercise tolerance and decrease hypoxia, as well as delay the need for oxygen therapy. Conclusion: Treatment with HRW in patients with hypoxia from chronic lung diseases may decrease oxidative stress and improve oxygen saturation in some patients. HRW therapy may also provide increased exercise tolerance in patients with chronic hypoxia, but further research is needed. Keywords: COPD; COVD-19; antioxidant; hydrogen-rich water; hypoxia; inflammation; oxidative stress.
Read more:
https://doi.org/10.3390/diseases11040127
Related Articles:
Background: Multiple organ failure (MOF) is the main cause of early death in septic shock. Lungs are among the organs that are affected in MOF, resulting in acute lung injury. A large number of inflammatory factors and stress injury in...
Background: Lung contusion caused by blunt chest trauma evokes a severe inflammatory reaction in the pulmonary parenchyma that may be associated with acute respiratory distress syndrome. Although hydrogen gas has antioxidant and anti-inflammatory effects and is protective against multiple types...
Background: Mitochondrial dysfunction results in poor organ quality, negatively affecting the outcomes of lung transplantation. Whether hydrogen benefits mitochondrial function in cold-preserved donors remain unclear. The present study assessed the effect of hydrogen on mitochondrial dysfunction in donor lung injury...
Background: This study sought to investigate therapeutic effects of hydrogen-rich saline (HRS) combined with hyperbaric oxygen (HBO2) in an experimental rat model of acute lung injury (ALI). Method: Forty male Sprague-Dawley rats were randomly divided into sham, LPS, LPS +...