Brain InjuryHypoxia-Ischemia

Impact of hydrogen gas inhalation during therapeutic hypothermia on cerebral hemodynamics and oxygenation in the asphyxiated piglet

by Aya Morimoto, Ikuko Kato, Ken-Ichi Ohta, Kosuke Koyano, Makoto Arioka, Masaki Ueno, Saneyuki Yasuda, Shinji Nakamura, Sonoko Kondo, Takanori Miki, Takashi Kusaka, Tsutomu Mitsuie, Yasuhiro Nakao, Yinmon Htun, Yukihiko Konishi

Abstract:

We previously reported the neuroprotective potential of combined hydrogen (H2) gas ventilation therapy and therapeutic hypothermia (TH) by assessing the short-term neurological outcomes and histological findings of 5-day neonatal hypoxic-ischemic (HI) encephalopathy piglets. However, the effects of H2 gas on cerebral circulation and oxygen metabolism and on prognosis were unknown. Here, we used near-infrared time-resolved spectroscopy to compare combined H2 gas ventilation and TH with TH alone. Piglets were divided into three groups: HI insult with normothermia (NT, n = 10), HI insult with hypothermia (TH, 33.5 ± 0.5 °C, n = 8), and HI insult with hypothermia plus H2 ventilation (TH + H2, 2.1-2.7%, n = 8). H2 ventilation and TH were administered and the cerebral blood volume (CBV) and cerebral hemoglobin oxygen saturation (ScO2) were recorded for 24 h after the insult. CBV was significantly higher at 24 h after the insult in the TH + H2 group than in the other groups. ScO2 was significantly lower throughout the 24 h after the insult in the TH + H2 group than in the NT group. In conclusion, combined H2 gas ventilation and TH increased CBV and decreased ScO2, which may reflect elevated cerebral blood flow to meet greater oxygen demand for the surviving neurons, compared with TH alone.


Read more:

https://doi.org/10.1038/s41598-023-28274-z


Related Articles:

Successful treatment of myalgic encephalomyelitis/chronic fatigue syndrome using hydrogen gas: four case...

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating condition marked by persistent fatigue, neuropsychiatric symptoms, and significant lifestyle disruptions, affecting an estimated 836,000 to 2.5 million individuals in the U.S. This condition has been linked to various systemic and neurological...

Year Published: 2024BrainChronic Fatigue Syndrome
Hydrogen exerts neuroprotective effects by inhibiting oxidative stress in experimental diabetic peripheral...

Diabetic peripheral neuropathy (DPN) is a complex disorder caused by long-standing diabetes. Oxidative stress was considered the critical creed in this DPN pathophysiology. Hydrogen has antioxidative effects on diabetes mellitus and related complications. However, there is still no concern on...

Year Published: 2023BrainDiabetes
Molecular hydrogen attenuates sepsis-induced cognitive dysfunction through regulation of tau phosphorylation

Background: Sepsis-associated encephalopathy (SAE) is a cognitive dysfunction caused by sepsis. Hyperphosphorylated tau is considered to play a significant role in the progression of neurodegenerative disease and also contributes to cognitive dysfunction in septic mice. Molecular hydrogen (H2) plays an...

Year Published: 2023BrainSepsis
Therapeutic Inhalation of Hydrogen Gas for Alzheimer’s Disease Patients and Subsequent Long-Term...

(1) Background: Alzheimer's disease (AD) is a progressive and fatal neurodegenerative disorder. Hydrogen gas (H2) is a therapeutic medical gas with multiple functions such as anti-oxidant, anti-inflammation, anti-cell death, and the stimulation of energy metabolism. To develop a disease-modifying treatment...

Year Published: 2023BrainAlzheimer's Disease